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o Does depend on orientation! 

o Contrast with scalar line integrals 

o Main application: work along a curve 

o In rare situations, you may encounter a vector line integral  
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a vector as the solution. Example: Electromagnetism - Biot-Savart Law 

 Vector Surface Integrals in Three-Space 
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 Concept of orientable surface: must have two sides. Example: a Möbius 

strip and a Klein bottle are not orientable (but they are still manifolds). 

 Use right hand rule to determine orientation. 

o Does depend on orientation! 

o You don't need a Jacobian unless using a change of variables 

o Contrast with scalar surface integrals 

 

Further notes: 

 Integrals of a Differential Form on a Manifold in n-Space 

o Manifold must be smooth, parameterized, and oriented. 

o Use a proper change of variables and Jacobian if necessary. 

o Scalar integrals and vector integrals are both integrals of differential forms. 

 

 

 

 

 

 

 


