• Vector Line Integrals

$$\circ \int_{C} \vec{F} \cdot d\vec{r}$$

- The vector line integral of a vector field \vec{F} along a piecewise smooth curve C parameterized $\vec{r}(t)$ is $\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \vec{r}'(t) dt$.
 - Note: This is just a substitution: $d\vec{r} = \vec{r}'(t)dt$
- o Does depend on orientation!
- o Contrast with scalar line integrals
- o Main application: work along a curve
- o In rare situations, you may encounter a vector line integral $\int_C \vec{F} \times d\vec{r}$, which yields

a vector as the solution. Example: Electromagnetism - Biot-Savart Law

- Vector Surface Integrals in Three-Space
 - o Flux

$$\circ \quad \iint_{S} \vec{F} \cdot d\vec{S}$$

- The vector surface integral of a vector field \vec{F} through a smooth oriented surface S parameterized $\vec{r}(s,t)$ is $\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F}(\vec{r}(s,t)) \cdot (\vec{r}_s \times \vec{r}_t) dA$, where D is the domain of S in the st-plane.
 - Note: This is just a substitution: $d\vec{S} = \hat{n}d\vec{S} = \frac{\vec{r}_s \times \vec{r}_t}{|\vec{r}_s \times \vec{r}_t|} |\vec{r}_s \times \vec{r}_t| dA = (\vec{r}_s \times \vec{r}_t) dA$
 - Concept of orientable surface: must have two sides. Example: a Möbius strip and a Klein bottle are not orientable (but they are still manifolds).
 - Use right hand rule to determine orientation.
- o Does depend on orientation!
- o You don't need a Jacobian unless using a change of variables
- o Contrast with scalar surface integrals

Further notes:

- Integrals of a Differential Form on a Manifold in n-Space
 - o Manifold must be smooth, parameterized, and oriented.
 - o Use a proper change of variables and Jacobian if necessary.
 - Scalar integrals and vector integrals are both integrals of differential forms.